Компонент ОПОП

Направленность (профиль)

Информационные системы и технологии искусственного интеллекта

Б1.О.13 шифр дисциплины

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Дисциплины (модуля)	Физика
Разработчик (и):	Утверждено на заседании кафедры
Михайлюк А.В.	Высшей математики и физики
ФИО	наименование кафедры
доцент	протокол № <u>6</u> от <u>22.03.2024</u>
должность	·
1	Заведующий кафедройВ M и Φ
<u>к. филос. н.</u> ученая степень,	B. A. C.
звание	лоппись <u>Левитес В.В.</u>

1. Критерии и средства оценивания компетенций и индикаторов их достижения, формируемых дисциплиной (модулем)

Код	Код и наименование индикатора(ов)	Результаты (обучения по дисципл	ине (модулю)	Оценочные средства те-	Оценочные средства
и наименование компетенции	достижения компетенции	Знать	Уметь	Владеть	кущего контроля	промежуточной аттестации
ОПК-1. Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности	ИД-1 _{ОПК-1} Применяет знания основ математики, физики, вычислительной техники и программирования ИД-2 _{ОПК-1} Решает стандартные профессиональные задачи с применением естественнонаучных и общеинженерных знаний, методов математического анализа и моделирования ИД-3 _{ОПК-1} Знает и применяет методы теоретического и экспериментального исследования объектов профессиональной деятельности	основные законы физики, методы теоретического и экспериментального исследования объектов профессиональной деятельности	применять основные законы физики и методы теоретического и экспериментального исследования объектов профессиональной деятельности	навыками решения стандартных профессиональных задач с применением физических знаний	- комплект заданий для выполнения лабораторных работ; - комплект заданий для составления конспектов; - тестовые задания; - типовые задания по вариантам для выполнения расчетнографических работ; - посещаемость занятий.	Экзаменаци- онные билеты Результаты текущего контроля

2. Оценка уровня сформированности компетенций (индикаторов их достижения)

Показатели	Шкала и	критерии оценки уровня сформирова	анности компетенций (индикаторов и	х достижения)
оценивания				
компетенций	Ниже порогового	Пороговый	Продвинутый	Высокий
(индикаторов	(«неудовлетворительно»)	(«удовлетворительно»)	(«xopowo»)	(«отлично»)
их достижения)				
Полнота	Уровень знаний ниже минималь-	Минимально допустимый уровень	Уровень знаний в объёме, соответ-	Уровень знаний в объёме, соответ-
знаний	ных требований.	знаний.	ствующем программе подготовки.	ствующем программе подготовки.
	Имели место грубые ошибки.	Допущены не грубые ошибки.	Допущены некоторые погрешности.	
Наличие	При выполнении стандартных за-	Продемонстрированы основные уме-	Продемонстрированы все основные	Продемонстрированы все основные
умений	даний не продемонстрированы	ния.	умения.	умения.
	основные умения.	Выполнены типовые задания с не	Выполнены все основные задания с	Выполнены все основные и дополни-
	Имели место грубые ошибки.	грубыми ошибками.	некоторыми погрешностями. Выпол-	тельные задания без ошибок и по-
		Выполнены все задания, но не в пол-	нены все задания в полном объёме,	грешностей.
		ном объеме (отсутствуют пояснения,	но некоторые с недочетами.	Задания выполнены в полном объеме
		неполные выводы)		без недочетов.
Наличие	При выполнении стандартных за-	Имеется минимальный набор навы-	Продемонстрированы базовые навы-	Продемонстрированы все основные
навыков	даний не продемонстрированы	ков для выполнения стандартных за-	ки при выполнении стандартных за-	умения.
(владение опытом)	базовые навыки.	даний с некоторыми недочетами.	даний с некоторыми недочетами.	Выполнены все основные и дополни-
	Имели место грубые ошибки.			тельные задания без ошибок и по-
				грешностей.
				Продемонстрирован творческий под-
				ход к решению нестандартных задач.
Характеристика сфор-	Компетенции фактически не	Сформированность компетенций со-	Сформированность компетенций в	Сформированность компетенций пол-
мированности компе-	сформированы.	ответствует минимальным требова-	целом соответствует требованиям.	ностью соответствует требованиям.
тенции	Имеющихся знаний, умений, на-	ниям.	Имеющихся знаний, умений, навы-	Имеющихся знаний, умений, навыков
	выков недостаточно для решения	Имеющихся знаний, умений, навы-	ков достаточно для решения стан-	в полной мере достаточно для реше-
	практических (профессиональ-	ков в целом достаточно для решения	дартных профессиональных задач.	ния сложных, в том числе нестандарт-
	ных) задач.	практических (профессиональных)		ных, профессиональных задач.
		задач.		ИЛИ
	ИЛИ		ИЛИ	Набрано зачетное количество баллов
	Зачетное количество баллов не	ИЛИ	Набрано зачетное количество баллов	согласно установленному диапазону
	набрано согласно установленно-	Набрано зачетное количество баллов	согласно установленному диапазону	
	му диапазону	согласно установленному диапазону		

3. Критерии и шкала оценивания заданий текущего контроля

3.1 Критерии и шкала оценивания лабораторных работ

Перечень лабораторных работ, описание порядка выполнения и защиты работы, требования к результатам работы, структуре и содержанию отчета и т.п. представлены в методических материалах по освоению дисциплины (модуля) и в электронном курсе в ЭИОС МАУ.

Оценка/баллы	Критерии оценивания
Отлично	Задание выполнено полностью и правильно. Отчет по лабораторной/практической работе подготовлен качественно в соответствии с требованиями. Полнота ответов на вопросы преподавателя при защите работы.
Хорошо	Задание выполнено полностью, но нет достаточного обоснования или при верном решении допущена незначительная ошибка, не влияющая на правильную последовательность рассуждений. Все требования, предъявляемые к работе, выполнены.
Удовлетворительно	Задания выполнены частично с ошибками. Демонстрирует средний уровень выполнения задания на лабораторную/практическую работу. Большинство требований, предъявляемых к заданию, выполнены.
Неудовлетворительно	Задание выполнено со значительным количеством ошибок на низком уровне. Многие требования, предъявляемые к заданию, не выполнены. ИЛИ Задание не выполнено.

3.2 Критерии и шкала оценивания тестирования

Перечень тестовых вопросов и заданий, описание процедуры тестирования представлены в методических материалах по освоению дисциплины (модуля) и в электронном курсе в ЭИОС МАУ.

В ФОС включен типовой вариант тестового задания по разделу «Механика»:

- 1. Какой из предложенных ответов не является верным в случае прямолинейного равноускоренного движения?
- А) Вектор скорости меняется по направлению.
- В) Вектор ускорения не меняется по направлению и величине.
- С) Векторы ускорения и скорости параллельны.
- D) Вектор скорости направлен по траектории движения.
- E) $\vec{a} = const.$
- 2. Какую мощность имеет двигатель насоса, поднимающего на 6 м 20 м³ воды за 10 минут:

Αἰ4κBm.

B 6200 κBm.

 $C \stackrel{!}{\iota} 2 \kappa Bm$.

D¿6κBm.

E ¿20 κBm.

- 3. Какой из предложенных ответов не является верным в случае равномерного движения тела по окружности?
- А) Тангенциальное ускорение направлено вдоль вектора скорости.
- B) $|\vec{v}| = const.$
- С) Угловая скорость постоянна по направлению и модулю.

- D) Модуль вектора скорости постоянен.
- Е) Нормальное ускорение постоянно по модулю и направлено по радиусу к центру.
- 4. Колесо радиусом R=0,1 м вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением $\varphi = A + Bt + Ct^2 + Dt^3$, где

B=2 pad/c, $C=2 pad/c^2$, $D=3 pad/c^3$. Найти линейную скорость точек, лежащих на ободе колеса, через 2 секунды после начала движения.

- A) 114 m/c. B). 4.6 m/c.
- C) 11.2 m/c.
- D) 112 m/c.
- E) 1,2 m/c.
- 5. Уравнение движения точки дается в параметрическом виде: x = A, $y = Bt^3$, A и B постоянные. Найти вид движения.
- А) Прямолинейное ускоренное.
- В) Прямолинейное равномерное.
- С) Прямолинейное равноускоренное.
- D) Криволинейное.
- Е) Прямолинейное.
- 6. Пловец переплывает реку перпендикулярно течению. Его скорость относительно берега $2,5 \, \text{м/c}$. Скорость течения реки $1,5 \, \text{м/c}$. Какова скорость пловца относительно воды?
- A) 2 m/c.
- B) 1 m/c.
- C) 2,9 m/c.
- D) 0.5 m/c.
- E) 20 m/c.
- 7. Какое из этих соотношений соответствует равномерному движению (\vec{r} радиус-вектор)?

A).
$$\frac{d\vec{r}}{dt} = const.$$

B)
$$\frac{d\vec{r}}{dt} = f(t)$$
.

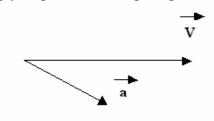
C)
$$\frac{d\vec{r}}{dt} = 0$$
.

D)
$$\frac{d\vec{r}}{dt} \neq const.$$

E)
$$\frac{dS}{dt} = 0$$
.

8. В общем случае длина пути, пройденного материальной точкой за промежуток времени от t_1 до t_2 равна:

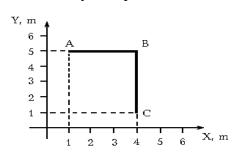
A)
$$S = \int_{t_1}^{t_2} \upsilon(t) dt$$
.
B) $S = \upsilon(t_2 - t_1)$.


B)
$$S = v(t_2 - t_1)$$

C)
$$S = \frac{v(t_2 - t_1)^2}{2}$$
.

D)
$$S = \int_{t_1}^{t_2} \frac{dt}{d(t)}$$
.

E)
$$S = \int_{t_1}^{t_2} (\upsilon(t))^2 dt$$
.


9. На рисунке изображены вектор ускорения и вектор скорости материальной точки.

Характер ее движения:

- А) Криволинейное замедленное.
- В) Прямолинейное ускоренное.
- С) Равнозамедленное движение по окружности.
- D) Криволинейное ускоренное
- Е) Прямолинейное замедленное.
- 10. Когда выполняется закон сохранения импульса:
- А) В замкнутых системах.
- В) Для малых скоростей, по сравнению со скоростью света.
- С) Когда взаимодействие между телами сводится к столкновению.
- D) Для тел в поле тяжести Земли.
- Е) В незамкнутых системах
- 11. Движение материальной точки задано уравнением $x = 4t^2 + 6(c)$. Ускорение этой точки:
- A) $1\frac{M}{c^2}$.
- B) $8\frac{M}{c^2}$.
- C). $4\frac{M}{c^2}$.
- D) $6\frac{M}{c^2}$.
- E) $10\frac{M}{c^2}$.
- 12. Что такое угловая скорость:
- A) Вектор, равный $\frac{d\varphi}{dt}$.
- В) Вектор, равный $[\vec{\epsilon}\vec{r}]$.
- С) Отношение углового перемещения ко времени, за которое это перемещение произошло.
- D) Отношение длины дуги окружности, по которой происходит вращение точки, ко времени поворота.
- Е) Отношение площади сектора, ограниченного дугой окружности и двумя радиусами по краям дуги, ко времени.
- 13. Диск вращается с угловым ускорением $-2\frac{pad}{c^2}$. Найдите время, в течение которого частота вращения изменяется от 240 $\textit{мин}^{-1}$ до 90 $\textit{мин}^{-1}$.

- A) 5,85 c. B) 10,5*c*. C) 7,85*c*. D) 4c. E) 12 c.
- 14. Траектория движения материальной точки изображена на рисунке линией АВС. Какова величина модуля перемещения АС?

A) 7 m; В) 5 м;

> C) 4 m;D) 3 m;

Е) 1 м.

- 15. Мяч бросают вертикально вверх со скоростью 5 M/c. Которое из уравнений описывает зависимость высоты мяча над землей от времени?
- A) $h=3t-10t^2$.
- B) $h=5t+5t^2$.
- C) h = 5t.
- D) $h=5t-5t^2$.
- 16. Вектор угловой скорости направлен:
- А) Вдоль оси вращения.
- В) По касательной к траектории.
- С) По радиусу окружности к её центру.
- D) По радиусу окружности от её центра.
- Е) По вектору линейной скорости.
- 17. Диск совершает 25 оборотов в секунду. Угловая скорость диска ω равна:
- A) $25 \pi c^{-1}$.
- B) $50 \pi c^{-1}$.
- C) $(20/\pi)c^{-1}$.
- E) $(25/\pi)c^{-1}$.
- 18. Укажите соотношение между силами трения при перемещении бруска по обеим граням наклонной плоскости, показанной на рисунке.

A) $F_1 = F_2$ B) $F_1 > F_2$ C) $F_1 < F_2$

- 19. Тело вращается вокруг закрепленной оси. Укажите величину угла между моментом силы относительно оси и изменением момента импульса тела относительно этой оси.
 - A) 45° .
- B) 90° .
- C) 180° .
- D) 270°.
- E) 0^{0} .
- 20. Точка массой $3 \kappa z$ движется со скоростью v = 5t(M/c), если на неё действует сила:
 - A) 10 H.
- B) 20 H.
- C) 15 H.
- D) 5 H.
- E) 25 H.

- 21. Неверным является утверждение о том, что:
- А) Кинетическая энергия может быть отрицательной.
- В) Кинетическая энергия должна быть положительной.
- С) Потенциальная энергия может быть отрицательной.
- D) Потенциальная энергия может быть положительной.
- Е) Потенциальная энергия может быть и отрицательной, и положительной.
- 22. Если кинетическая энергия релятивистской частицы равна ее энергии покоя, то масса движущейся частицы m и масса покоя m_0 связаны соотношением:
 - A) $m=1,5m_0$.
- B) $m = m_0$.

C) $m = 1,2 m_0$.

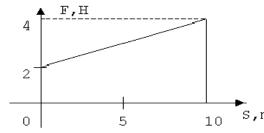
D) $m = 2 m_0$.

- E) $m=1,3m_0$.
- 23. Определите скорость движения протона в ускорителе, если масса его возросла в 10 раз:
 - A) $2.985 \times 10^8 \,\text{m/c}$.

 $B \stackrel{?}{\iota} 0.3125 \times 10^8 \,\text{m/c}$

 $C_{6}^{2}2.568 \times 10^{8} \text{ M/c}$

 $D \stackrel{!}{\iota} 0.1537 \times 10^8 \,\text{M/c}$


 $E i 1.068 \times 10^8 \,\text{M/c}$

- 24. Тело массой З кг плавает в жидкости, на 60% погрузившись в нее. Чему равна выталкивающая сила, действующая на это тело:
- A) 12 H.
- B) 18 H.
- C) 24 H.
- D) 30 H.
- E) 36 H.
- 25. Самолет летит со скоростью 360 км/час. Слой воздуха у крыла самолета, увлекаемый вследствие вязкости, равен 4 см. Чему равен градиент скорости:
 - A) $2 \times 1031/c$.
- B) 901/c.

С) 1440 км/см.

D) $10^3 1/c$.

- E) $2.5 \times 10^3 1/c$.
- 26. По графику изменения силы определить работу, совершенную силой на пути 10 м.

- А) 40 Дж;
- В) 20 Дж;
- С) 80 Дж;
- D) 30 Дж;
- Е) 60 Дж.
- 27. Радиус шара равен 30 см. Момент инерции шара относительно оси, проходящей через его центр, равен $4 \kappa_2 \times M^2$. Найти момент инерции ($\kappa_2 \times M^2$) шара относительно оси, которая касается поверхности шара, если масса шара равна 100 кг.
- $A \stackrel{\cdot}{\iota} 5 \kappa \epsilon \times m^2$.
- B $\stackrel{?}{\iota}$ 7 K $\stackrel{?}{\iota}$ × $\stackrel{?}{\iota}$
- $C \stackrel{\cdot}{\iota} 13 \text{ Kz} \times \text{M}^2$. $D \stackrel{\cdot}{\iota} 11 \text{ Kz} \times \text{M}^2$. $E \stackrel{\cdot}{\iota} 8 \text{ Kz} \times \text{M}^2$.
- 28. Сплошной однородный диск $\left(J = \frac{1}{2} m r^2\right)$ массой 2 кг катится без скольжения по горизонталь-

ной плоскости со скоростью 4 м/с. Найти кинетическую энергию диска.

А і 32 Дж.

Ві12 Дж.

Сі16 Дж.

Ді6Дж.

Е 68 Дж.

29. Ионизированный атом, вылетев из ускорителя со скоростью 0,8c, испустил фотон в направлении своего движения. Скорость фотона относительно ускорителя:

 $A \stackrel{!}{\circ} 0, 2c.$

 $B\ddot{\iota}1,8c.$

 $C \stackrel{!}{\iota} 0, 8c.$

Dic.

E) 0.9c.

- 30. Коэффициент внутреннего трения численно равен...
- А) силе трения между слоем жидкости и движущимся в ней твердым телом;
- В) силе трения между стенкой сосуда и жидкостью, движущейся в этом сосуде;
- С) силе трения между двумя слоями жидкости единичной поверхности, движущимися друг относительно друга;
- Е) силе трения между двумя слоями жидкости единичной поверхности с градиентом скорости, равным единице.

Оценка/баллы	Критерии оценки
Отлично	90-100 % правильных ответов
Хорошо	70-89 % правильных ответов
Удовлетворительно	50-69 % правильных ответов
Неудовлетворительно	49% и меньше правильных ответов

3.3 Критерии и шкала оценивания расчетно-графической работы

Перечень контрольных заданий, рекомендации по выполнению представлены в методических материалах по освоению дисциплины (модуля) и в электронном курсе в ЭИОС МАУ.

В ФОС включен типовой вариант задания расчетно-графической работы.

Комплект заданий для расчётно-графической работы: «Физические основы механики»

Кинематика материальной точки

- 1. Движение материальной точки задано уравнениями: $x = At^2 + B$, m; $y = Ct^2 D$, m; Z = 0. Определить:
- 1) модули скорости и ускорения точки в момент времени t' = E, c;
- 2) путь, пройдённый точкой за промежуток времени $t_1 = F$ с до $t_2 = K c$;
- 3) среднюю скорость точки в промежуток времени $t_1 = F$ с до $t_2 = K$ c;

Числовые значения параметров задачи

№ варианта	1	2	3	4	5	6	7	8	9	10	11	12	13
A, M	1,0	1,5	2,0	1,0	2,0	2,5	1,0	1,5	3,0	3,5	1,0	4,0	2,0
В, м	1,0	1,5	1,0	2,0	1,5	1,0	2,5	1,0	1,5	1,0	3,0	2,0	3,0
С, м	1,2	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0	5,0	5,5	5,0	4,5
Д, м	1,0	1,0	1,0	1,0	1,5	1,0	1,0	2,0	1,5	2,0	1,5	2,5	3,0
Е, с	1,0	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0	5,5	6,0	6,5	7,0
<i>F</i> , <i>c</i>	0	1,0	1,0	1,0	1,0	0	0	1,0	2,0	2,0	1,0	1,5	0
К, с	3,0	4,0	4,5	5,0	5,5	6,0	6,5	6,0	7,0	6,5	7,0	6,5	7,0
№ варианта	14	15	16	17	18	19	20	21	22	23	24	25	26

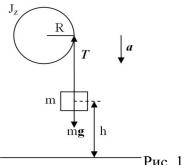
А, м	2,5	2,0	1,0	1,5	3,0	3,5	4,0	4,5	3,5	5,0	1,0	2,0	5,0
В, м	3,0	3,0	3,0	3,0	3.0	3,0	3.0	3,0	3,5	3,0	6,0	6,0	1,0
С, м	2,0	2,5	3,0	3,5	4.0	4,5	5,0	5,5	6,0	2,0	6.0	6,0	6,0
Д, м	1,5	2,0	1,0	0	0	1,0	1,5	2.0	3.0	1,0	2,0	3.0	4.0
Е, с	7,5	8,0	8,5	9,0	9,5	10,0	10,5	11,0	11,5	12,0	12,5	13,0	13,5
F, c	1,0	2,0	0	0	1,0	2,0	2,0	2,5	3,0	2,0	1,0	3,0	4,0
К, с	7,5	8,0	8,5	9,0	9,5	10,0	10,5	11,0	11,5	12,0	12,5	13,0	13,5

- 2. Радиус-вектор материальной точки относительно начала координат изменяется со временем по закону: $\vec{r} = b \ t \hat{i} + c \ t^2 \hat{j}$.
- 1) получить уравнение траектории точки;
- 2) построить график траектории точки в промежуток времени от $t_0 = 0$ до $t = 5 \ c_1$

Числовые значения параметров задачи

№ варианта	1	2	3	4	5	6	7	8	9	10	11	12	13
<i>b, м/с</i>	1,0	2,0	1,5	1,0	1,5	2,0	2,5	1,0	2,5	1,5	2,5	2,0	2,5
c, м/c ²	2,0	1,0	1,0	1,5	1,5	2,0	1,0	2,5	1,5	2,5	2,0	2,5	3,0
№ варианта	14	15	16	17	18	19	20	21	22	23	24	25	26
<i>b, м/с</i>	3,0	3,0	1,0	3,0	2,0	2,5	3,5	1,0	3,5	2,0	4,0	3,0	4,0
c, м/c ²	2,5	1,0	3,0	2,0	3,0	3,0	1,0	3,5	2,0	3,5	3,0	4,0	5,0

- 3. Твёрдое тело вращается вокруг неподвижной оси Z по закону: $\varphi = at bt^2$:
- 1) каков характер движения этого тела?
- 2) определить модули угловой скорости ω и углового ускорения ε тела, полное число оборотов N, совершённых телом за время $t_1 = 5$ c;
- 3) определить момент времени t_2 , когда направление вращения тела изменяется на противоположное;
- 4) построить график зависимости угловой скорости и углового ускорения тела от времени;
- 5) указать относительное направление векторов угловой скорости $\vec{\omega}$ и углового ускорения $\vec{\varepsilon}$.


Числовые значения параметров задачи

№ варианта	1	2	3	4	5	6	7	8	9	10	11	12	13
а, рад/с	5,0	5,0	5,0	3,0	4,0	6,0	6,0	7,0	7,0	7,0	8,0	8,0	8,0
в, $pa\partial/c^2$	1,0	2,0	3,0	1,0	1,0	2,0	3,0	2,0	3,0	4,0	1,0	2,0	3,0
№ варианта	14	15	16	17	18	19	20	21	22	23	24	25	26
а, рад/с	8,0	8,0	9,0	9,0	9,0	9,0	9,0	10,0	10,0	10,0	10,0	10,0	20,0
в, paд/c²	4,0	5,0	1,0	2,0	3,0	4,0	5,0	2,0	3,0	4,0	5,0	6,0	1,0

Динамика материальной точки

4. На обод маховика в форме однородного сплошного диска массой m_1 и радиусом R намотана лёгкая нить, к концу которой прикреплён груз массой m_2 . Уравнение вращения маховика: $\varphi = \dot{\epsilon} \frac{t^2}{2}$. До начала вращения маховика высота груза над полом составляла h (рис. 1). Определить:

- 1). тангенциальное ускорение и линейную скорость, нормальное и полное ускорения точек обода маховика; время опускания груза до пола; кинетическую энергию груза в момент удара о пол;
- 2). угловую скорость и угловое ускорение маховика;
- 3). силу натяжения нити с грузом; работу силы натяжения по опусканию груза на пол;
- 4). момент силы натяжения нити маховика, его момент импульса и момент инерции маховика; кинетическую энергию маховика;
- 5). направления векторов угловой скорости, углового ускорения, момента силы и момента импульса маховика.

Числовые значения параметров задачи

№ варианта	1	2	3	4	5	6	7	8	9	10	11	12	13
т₁, кг	5,0	4,0	3,0	2,0	1,0	6,0	7,0	8,0	9,0	10,0	1,0	2,0	3,0
т2. кг	1,0	2,0	3,0	4.0	5,0	6.0	10,0	9,0	8,0	7,0	3,0	2,0	1,0
<i>R, м</i>	0,5	0,4	0,3	0,2	0,2	0,4	0,5	0,6	0,7	1,0	0,2	0,3	0,4
<i>h</i> , м	1,0	1,5	1,0	1,2	1,4	1,5	2,0	2,5	3,0	4,0	2,0	1,0	0,5
№ варианта	14	15	16	17	18	19	20	21	22	23	24	25	26
т ₁ , кг	3,0	2,0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10,0	0,5
т2. кг	3,0	2,0	1,0	2,5	3,5	4,0	5,0	4,0	4,0	3,0	2,0	4,0	0,2
<i>R, м</i>	0.25	0,2	0,2	0,25	0,3	0,5	0,6	0,6	0,7	0,8	0,9	1,0	0,15
<i>h</i> , м	2,0	2,5	1,0	0,5	0,6	0,4	1,0	1,5	1,2	1,5	2,0	2,5	0,5

«Основы молекулярной физики и термодинамики»

Основы молекулярной физики

- 5. В закрытом резервуаре объёмом V находится газ X. Начальное состояние газа (состояние 1) характеризуется термодинамическими параметрами: масса газа m_1 , давление газа P_1 , температура газа T_1 . После того, как в резервуар впустили некоторое количество такого же газа, его состояние (состояние 2) стало характеризоваться следующими термодинамическими параметрами: масса газа m_2 , давление газа P_2 , температура газа T_2 . Затем газ изохорно перевели в состояние 3 с термодинамическими параметрами: P_3 и $T_3 = T_1$. Считая газ идеальным, а значения термодинамических параметров V; m_1 ; T_1 ; m_2 и T_2 известными, найти:
- 1) значения термодинамических параметров газа в состоянии 1- P_1 ; в состоянии 2- P_2 и в состоянии 3- P_3 ; массу m_0 молекулы газа, количество молей vгаза, общее число N и концентрацию n молекул газа и плотности ρ газа в состояниях 1 и 2;
- 2) наиболее вероятную υ_{ϵ} , среднюю $<\upsilon>$, среднюю квадратичную $<\upsilon_{\kappa\epsilon}>$ скорости молекул газа в состояниях 1 и 2; среднюю кинетическую энергии поступательного $<\varepsilon_n>\dot{\iota}$, вращательного $<\varepsilon_{\epsilon\rho}>\dot{\iota}$ движения молекул газа и среднее значение их полной кинетической энергии $<\varepsilon>\dot{\iota}$ в состояниях 1 и 2;
- 3) молярные C_v , C_p и удельные c_v , c_p теплоёмкости газа, показатель адиабаты γ и внутреннюю энергию U газа в состояниях 1 и 2;

4) изобразить термодинамическую диаграмму рассматриваемого изохорного процесса в координатах (P, V), (P, T) и (V, T).

Числовые значения параметров задачи

№ варианта	1	2	3	4	5	6	7	8	9	10	11	12	13
V, M^3	0,30	0,25	0,20	0,15	0,10	0,05	0,04	0,03	0,02	0,03	0,04	0,05	0,06
X	H_2	Не	O_2	N_2	NH ₃	CO_2	Ar	H_2	Не	O_2	N_2	NH ₃	CO ₂
т ₁ , кг	0,30	0,25	0,20	0,15	0,10	0,50	0,40	0,30	0,20	0,30	0,40	0,50	0,60
T_1 , K	330	325	320	315	300	350	340	300	320	350	270	300	330
т2, кг	0,10	0,15	0,30	0,35	0,50	0,50	0,40	0,70	0,30	0,50	0,60	0,50	0,40
T_2 , K	360	330	340	330	250	370	350	320	300	290	300	350	360
№ варианта	14	15	16	17	18	19	20	21	22	23	24	25	26
V, м ³	0,10	0,15	0,20	0,25	0,30	0,25	0,20	0,15	0,10	0,05	0,04	0,03	0,025
X	Ar	H_2	Не	O_2	N_2	NH_3	CO_2	Ar	H_2	Не	O_2	N_2	NH ₃
<i>m</i> ⋅₁, κε	0,25	0,30	0,40	0,20	0,60	0,25	0,20	0,30	0,40	0,5	0,4	0,3	0,25
T_1 , K	300	330	250	350	360	300	320	330	340	250	300	330	350
т2, кг	0,25	0,20	0,60	0,80	0,40	0,75	0,80	0,70	0,60	1,00	0,60	0,70	0,75
T_2 , K	330	340	350	300	280	320	290	340	300	300	350	360	300

- 6. Газ X нагревают от температуры T_1 до температуры T_2 . Полагая, что функция Максвелла имеет вид $f(v,T)=4\pi~(\frac{m_i}{2\,\pi kT})^{3/2}v^2e^{\frac{-m_iv^2}{2\,kT}}$:
- 1) используя закон, выражающий распределение молекул идеального газа по скоростям f(v, T) вывести формулы средней арифметической $\langle v \rangle \dot{c}$, средней квадратичной $\langle v_{\kappa e} \rangle$ наиболее вероятной v_{ϵ} скоростей и определить их числовые значения для температур T_1 и T_2 ;
- 2) используя закон, выражающий распределение молекул идеального газа по скоростям f(v, T):
- 2.1) получить функцию распределения молекул газа по значениям кинетической энергии поступательного движения $f(\varepsilon)$;
- 2.2) используя функцию распределения молекул газа по энергиям $f(\varepsilon)$, вывести формулы средней кинетической энергии $<\varepsilon>$ молекул и наиболее вероятное значение энергии $\varepsilon_{\rm g}$ молекул и рассчитать их числовые значения для температур T_1 и T_2 ;

Числовые значения параметров задачи

№ варианта	1	2	3	4	5	6	7	8	9	10	11	12	13
X	H_2	Не	O_2	N_2	NH_3	CO_2	Воздух	H_2	Не	O_2	N_2	NH_3	CO ₂
T_1 , K	250	270	280	290	300	310	320	330	340	350	360	370	380
T_2 , K	270	290	300	310	320	330	340	360	380	360	370	390	400
<u>№</u> варианта	14	15	16	17	18	19	20	21	22	23	24	25	26
X	Воздух	H_2	Не	O_2	N_2	NH_3	CO_2	Ar	H_2	Не	O_2	N_2	NH ₃
<i>T</i> ₁ , <i>K</i>	380	370	360	350	340	330	320	310	300	290	280	270	260
T_2 , K	400	390	380	370	360	350	340	330	320	310	300	290	280

- 7. v молей газа X, занимающего объём V_1 и находящегося под давлением P_1 , подвергается изохорному нагреванию до температуры $T_2 = 2T_1$. После этого газ подвергли изотермическому расширению до начального давления, а затем он в результате изобарного сжатия возвращён в первоначальное состояние.
- 1) построить график цикла и определить:

- 2) изменение внутренней энергии газа в каждом из рассматриваемых термодинамических процессов и в целом за цикл;
- 3) работу газа в рассматриваемых термодинамических процессах и в целом за цикл;
- 4) количество теплоты, сообщённое газу в каждом из рассматриваемых процессов и за цикл в целом;
- 5) термодинамический КПД цикла.

Числовые значения параметров задачи

№ варианта	1	2	3	4	5	6	7	8	9	10	11	12	13
X	H_2	Не	O_2	N_2	NH_3	CO_2	Воздух	H_2	Не	O_2	N_2	NH_3	CO_2
V , моль	1	2	3	4	5	6	7	8	9	10	1	2	3
V_1 , π	5	4	3	2	1	6	7	8	9	10	5	4	3
P_1 • 10 ⁵ , Πa	0,5	1,0	1.5	2,0	2,5	3,0	3,5	4,0	5,0	5,5	1,0	2,0	3,0
№ вариан- та	14	15	16	17	18	19	20	21	22	23	24	25	26
X	Воздух	H_2	Не	O_2	N_2	NH_3	CO_2	Ar	H_2	Не	O_2	N_2	NH_3
V , моль	10	9	8	7	6	5	4	3	2	1	2	3	4
V_1, π	10	9	8	7	6	5	4	3	2	1	2	3	4
$P_1 \bullet 10^5, \Pi a$	5,0	4,5	4,0	3,5	3,0	2,5	2,0	1,5	2,0	2,0	4.0	3,0	4,0

- 8. Идеальная тепловая машина работает по циклу Карно. Рабочим телом является воздух, масса которого m. При давлении P_1 , воздух занимает объём V_1 . После изотермического расширения воздух занял объём V_2 ; после адиабатического расширения объём стал V_3 . Найти:
- 1) координаты пересечения изотерм и адиабат и построить диаграмму цикла Карно для рассматриваемого термодинамического процесса;
- 2) количество теплоты, полученной от нагревателя и количество теплоты, отданное холодильнику за один цикл;
- 3) работу, совершаемую на каждом участке цикла и полную работу за весь цикл;
- 4) изменение энтропии нагревателя и холодильника;

Числовые значения параметров задачи

№ варианта	1	2	3	4	5	6	7	8	9	10	11	12	13
т, кг	5	4	3	2	1	2	3	4	5	6	7	5	4
$P_1 \bullet 10^5, \Pi a$	20	15	10	8	5	6	7	8	10	12	20	15	10
V_1 . M^3	0,2	0,1	0,15	0,2	0,1	0,4	0,5	0,5	0,3	0,4	0,2	0,3	0,4
V_2 . M^3	0,3	0,3	0,25	0,4	0,3	0,6	0,7	0,6	0,6	0,6	0,4	0.5	0,6
V_3 . M^3	0,5	0,6	0,6	0,8	0,6	0,8	0,8	0,7	0,8	0,8	0,6	0,7	0,8
№ варианта	14	15	16	17	18	19	20	21	22	23	24	25	26
т, кг	1	2	3	4	5	6	5	4	3	2	1	2	3
$P_1.10^5, \Pi a$	10	20	30	20	25	30	15	12	9	8	5	6	3
V_1 . M^3	0,5	0,5	0,6	0,7	0,5	0,6	0,4	0,6	0,3	0,4	0,2	0,5	0,4
V_2 . M^3	0,7	0,6	0,7	0,8	0,6	0,7	0,6	0,7	0,6	0,6	0,4	0,7	0,7
V_3 . M^3	0,8	0,8	0,8	0,9	0,8	0,8	0,8	0,9	0,8	0,8	0,6	0,8	0,9

«Электростатика. Постоянный электрический ток»

- 9. Площадь обкладок плоского конденсатора S, а расстояние между обкладками равно d. Конденсатор зарядили до разности потенциалов U_1 и отключили от источника напряжения, после чего вплотную к обкладкам вдвинули пластину диэлектрика с диэлектрической проницаемостью ε . Определить:
- 1) следующие параметры конденсатора:
- ёмкости конденсатора C_1 и C_2 до и после введения диэлектрика;
- электрический заряд на обкладках конденсатора;
- разность потенциалов U_2 между обкладками конденсатора после введения диэлектрика;
- напряжённость электростатического поля внутри конденсатора до и после введения пластины диэлектрика;
- поверхностную плотность заряда на обкладках конденсатора до и после введения пластины диэлектрика;
- энергию конденсатора до и после введения диэлектрика;
- 2) работу, которую нужно совершить против сил электрического поля, чтобы вынуть диэлектрик;
- 3) определить общую ёмкость батареи конденсаторов, если к конденсатору C_1 присоединить последовательно два таких же конденсатора, соединённых между собой параллельно (рис. 2).

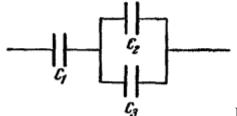


Рис. 2.

Числовые значения параметров задачи

№ варианта	1	2	3	4	5	6	7	8	9	10	11	12	13
S, M^2	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,02	0,03	0,04	0,05	0,06	0,05
<i>d</i> •10 ⁻³ , м	5	6	5	4	5	6	7	5	3	2	3	5	2
U_1, B	300	200	100	400	250	300	200	400	100	200	300	400	500
ε	7	2	5	2	5	3	7	5	3	2	3	5	2
№ варианта	14	15	16	17	18	19	20	21	22	23	24	25	26
S, m^2	0,05	0,03	0,03	0,04	0,05	0,06	0,07	0,05	0,03	0,04	0,06	0,05	0,05
<i>d</i> •10⁻³, м	5	6	5	4	5	6	7	5	3	2	3	5	2
U_1, B	200	100	400	250	300	200	400	100	200	300	400	500	100
ε	2	5	7	5	3	2	5	5	2	3	2	5	5

- 10. К источнику тока с ЭДС ε и внутренним сопротивлением r присоединены три сопротивления R_1 , R_2 и R_3 как показано на схеме (рис. 3). Определить:
- 1) силу тока короткого замыкания $I_{\kappa 3}$; общее сопротивление R внешней цепи;
- 2) силу тока I во внешней цепи, напряжение U_r во внутренней цепи, напряжение U во внешней цепи при замкнутом ключе K; силы тока I_1 , I_2 , I_3 и падение напряжений U_1 , U_2 , U_3 соответственно на сопротивлениях R_1 , R_2 и R_3 ;
- 3) показания вольтметра сопротивлением R_{ν} при разомкнутом ключе K; относительную погрешность в показаниях вольтметра без учёта тока, идущего через вольтметр;

- 4) полную мощность P источника тока; полезную мощность P_n во внешней цепи; максимальную полезную мощность P_{max} в режиме согласования источника ток с его нагрузкой; $K\Pi \mathcal{I}$ η источника тока; количество теплоты Q_1 , Q_2 , Q_3 , выделяемое в секунду при прохождении тока соответственно на сопротивлениях R_1 , R_2 и R_3 ;
- 5) построить график зависимости падения напряжения U во внешней цепи от внешнего сопротивления R; сопротивление R взять в пределах $R'' \le R \le R'$ через каждые 2 O_M .

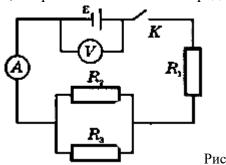


Рис. 3.

Числовые значения параметров задачи

№ варианта	1	2	3	4	5	6	7	8	9	10	11	12	13
ε , B	6	5	4	3	2	3	4	5	6	7	8	9	10
r, Ом	0,5	0,4	0,3	0,2	0,5	0,6	0,7	0,8	0,9	1,0	1,1	1,2	1,3
R_1 , O_M	1	2	3	4	5	6	7	8	9	10	9	8	7
R ₂ , Ом	2	1	4	3	4	5	6	7	8	9	10	9	8
R_3 , O м	3	2	1	2	3	4	5	6	7	8	9	10	9
R_{ν} , $\kappa O_{\mathcal{M}}$	2,0	2,5	3,0	3,5	4,0	4,5	5,0	4,5	4,0	3,5	3,0	2,5	2,0
R', Ом	5	6	8	10	5	6	8	10	5	6	8	10	5
R", Ом	2	3	4	5	2	3	4	5	2	3	4	5	2
№ варианта	14	15	16	17	18	19	20	21	22	23	24	25	26
ε, Β	3	2	1	2	3	4	5	6	7	8	9	10	8
r, Ом	1,0	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2,0	2,1	2,2
R_1 , O_M	10	9	8	7	6	5	4	3	2	1	2	3	4
R_2 , Ом	5	4	4	3	3	2	2	3	4	5	6	7	8
R_3 , O_M	3	2	1	2	3	4	5	6	7	8	9	10	9
R_{v} , к O м	5,0	4,5	4,0	3,5	3,0	2,5	2,0	1,5	1,0	1,5	1,6	1,7	1,8
R ['] , Ом	5	6	8	10	5	6	8	10	5	6	8	10	5
R", Ом	2	3	4	5	2	3	4	5	2	3	4	5	2

Оценка/баллы	Критерии оценивания
Отлично	Работа выполнена полностью, без ошибок (возможна одна неточность, описка, не являющаяся следствием непонимания материала).
Хорошо	Работа выполнена полностью, но обоснования шагов решения недостаточны, допущена одна негрубая ошибка или два-три недочета, не влияющих на правильную последовательность рассуждений.
Удовлетворительно	В работе допущено более одной грубой ошибки или более двух-трех недочетов, но обучающийся владеет обязательными умениями по проверяемой теме.
Неудовлетворительно	В работе есть грубые ошибки и недочеты ИЛИ Контрольная работа не выполнена.

3.4 Критерии и шкала оценивания составления конспекта по теоретическим вопросам

Перечень теоретических вопросов для составления конспекта, рекомендации по выполнению представлены в методических материалах по освоению дисциплины (модуля) и в электронном курсе в ЭИОС МАУ.

Оценка/баллы	Критерии оценивания
Отлично	Задание выполнено полностью и правильно на <u>90-100%</u> . Конспект по теоретическим вопросам РП дисциплины «Физика» подготовлен качественно в соответствии с требованиями. Полнота и последовательность изложения материала, правильное определение основных понятий, формулировок законов, описание основных физических явлений, процессов и методов исследования, степень осознанности и понимания изученного материала при ответах на вопросы преподавателя.
Хорошо	Задание выполнено более чем на 75-89% правильно, т.е. некоторые вопросы раскрыты не полностью, что не влияет на правильную последовательность рассуждений. Все требования, предъявляемые к работе, выполнены.
Удовлетворительно	Задания выполнены на <u>50-74%</u> , частично с ошибками. Демонстрирует средний уровень выполнения задания на самостоятельную работу. Большинство требований, предъявляемых к заданию, выполнены.
Неудовлетворительно	Задание не выполнено ИЛИ Задание выполнено менее, чем на 50 %, со значительным количеством ошибок на низком уровне. Многие требования, предъявляемые к заданию, не выполнены.

3.5 Критерии и шкала оценивания посещаемости занятий

Посещение занятий обучающимися определяется в процентном соотношении

Баллы	Критерии оценки
9	посещаемость 75 - 100 %
5	посещаемость 50 - 74 %
0	посещаемость менее 50 %

4. Критерии и шкала оценивания результатов обучения по дисциплине (модулю) при проведении промежуточной аттестации

4.1 Критерии и шкала оценивания результатов освоения дисциплины (модуля) с зачетом

Если обучающийся набрал зачетное количество баллов согласно установленному диапазону по дисциплине (модулю), то он считается аттестованным.

Оценка	Баллы	Критерии оценивания
Зачтено	60 - 100	Набрано зачетное количество баллов согласно установленному диапазону
Не зачтено	менее 60	Зачетное количество согласно установленному диапазону баллов не набрано

4.2 Критерии и шкала оценивания результатов освоения дисциплины (модуля) с экзаменом

Для дисциплин (модулей), заканчивающихся экзаменом, результат промежуточной аттестации складывается из баллов, набранных в ходе текущего контроля и при проведении экзамена:

В ФОС включен список вопросов и заданий к экзамену и типовой вариант экзаменационного билета.

Экзаменационные вопросы по разделам «Электромагнетизм. Колебания и волны. Оптика. Основы физики атома и атомного ядра»

Электромагнетизм

- 1. Магнитная индукция. Магнитный момент витка с током. Принцип суперпозиции магнитных полей.
- 2. Закон Био Савара Лапласа. Магнитное поле около прямолинейного проводника с током, витка с током.
- 3. Действие магнитного поля на проводник с током (сила Ампера). Взаимодействие параллельных токов.
- 4. Действие магнитного поля на движущийся заряд (сила Лоренца).
- 5. Поток вектора магнитной индукции. Теорема Остроградского Гаусса для магнитного поля.
- 6. Теорема о циркуляции вектора магнитной индукции. Магнитное поле соленоида.
- 7. Работа по перемещению проводника и контура с током в магнитном поле.
- 8. Опыты Фарадея и следствия из них. Явление электромагнитной индукции. Закон Фарадея. Правило Ленца.
- 9. Вращение рамки в магнитном поле. Токи Фуко.
- 10. Индуктивность контура. Самоиндукция. Токи при замыкании и размыкании цепи.
- 11. Взаимная индукция. Трансформаторы.
- 12. Энергия магнитного поля. Объемная плотность энергии.
- 13. Магнитный момент электронов в атоме. Намагниченность.
- 14. Магнитное поле в веществе: диа-, пара- и ферромагнетизм. Петля гистерезиса.
- 15. Уравнение Максвелла в интегральной форме. Ток смещения.

Колебания и волны

- 1. Уравнение колебаний гармонического осциллятора, энергия колебаний.
- 2. Физический и математический маятники. Колебание тела на пружине.
- 3. Гармонические колебания в электрическом колебательном контуре.
- 4. Затухающие колебания, логарифмический декремент затухания, добротность.
- 5. Вынужденные колебания, резонанс, использование резонанса в электрических цепях.
- 6. Упругие волны. Уравнение волны. Одномерное волновое уравнение.
- 7. Продольные и поперечные волны. Уравнение для плоской электромагнитной волны.
- 8. Свойства электромагнитных волн. Шкала электромагнитных волн.
- 9. Энергия электромагнитного поля, вектор Умова Пойнтинга.

Оптика. Атомная и ядерная физика

- 1. Скорость света, показатель преломления среды.
- 2. Законы преломления и отражения света на границе раздела сред.
- 3. Принцип Ферма. Принцип Гюйгенса.
- 4. Интерференция света: пространственная и временная когерентность, сложение двух когерентных колебаний (опыт Юнга).
- 5. Дифракция света, принцип Гюйгенса Френеля.

- 6. Дифракция на дифракционной решетке.
- 7. Взаимодействие света и вещества, дисперсия.
- 8. Поглощение света, закон Бугера, рассеяние света.
- 9. Естественный и поляризованный свет. Закон Малюса.
- 10. Поляризация света при отражении и преломлении света на границе диэлектриков. Закон Брюстера.
- 11. Двойное лучепреломление. Вращение плоскости поляризации.
- 12. Законы теплового излучения. Гипотеза Планка.
- 13. Фотоэффект. Законы внешнего фотоэффекта. Формула Эйнштейна.
- 14. Масса и импульс фотона. Давление света.
- 15. Модели атомов по Томсону и Резерфорду. Линейчатый спектр атома водорода.
- 16. Атом водорода по теории Бора.
- 17. Основы квантовой механики. Соотношение неопределенностей Гейзенберга, волна де Бройля.
- 18. Волновая функция, уравнение Шредингера.
- 19. Частица в потенциальной яме, квантование энергии частицы.
- 20. Атом водорода по квантовой механике. Понятие о квантовых числах. Спин электрона.
- 21. Квантовая механика многоэлектронных атомов, принцип Паули.
- 22. Атомное ядро, его состав, энергия связи, дефект массы.
- 23. Ядерные силы. Модели ядра.
- 24. Радиоактивность. Виды радиоактивного излучения.
- 25. Закон радиоактивного распада. Активность.
- 26. α-распад, β-распад, Υ-излучение и его свойства. Правила смещения
- 27. Реакция деления ядра тяжелых атомов. Ядерная энергетика.
- 28. Синтез легких атомных ядер, проблема управляемого термоядерного синтеза.
- 29. Элементарные частицы. Классификация элементарных частиц.
- 30. Типы взаимодействия элементарных частиц, частицы и античастицы.

Практические задания к экзамену по разделам «Электромагнетизм. Колебания и волны. Оптика. Основы физики атома и атомного ядра»

- 1. Катушка длиной l=30 см имеет N=1000 витков. Найти напряженность H магнитного поля внутри катушки, если по катушке проходит ток I=2А. Диаметр катушки считать малым по сравнению с ее длиной.
- 2. Найти напряженность H магнитного поля в центре кругового проволочного витка радиусом R=1 см, по которому течет ток I=2 A.
- 3. Электрон, ускоренный разностью потенциалов U = 1 кВ, влетает в однородное магнитное поле, перпендикулярное к направлению его движения. Индукция магнитного поля B = 1,19 Тл. Найти радиус окружности R, по которой движется электрон, и период T обращения электрона.
- 4. Из проволоки длиной l=1 м сделана квадратная рамка. По рамке течет ток l=10 А. Найти напряженность H магнитного поля в центре рамки.
- 5. В однородном магнитном поле напряженностью H=79,6 кА/м помещена квадратная рамка, плоскость которой составляет с направлением магнитного поля угол $\alpha=45^{\circ}$. Длина стороны рамки 5 см. Найти магнитный поток Φ , пронизывающий рамку.
- 6. Круговой контур помещен в однородное магнитное поле так, что плоскость контура перпендикулярна к направлению магнитного поля. Напряженность магнитного поля H = 150 кА/м.

По контуру течет ток I=2 А. Радиус контура R=2 см. Какую работу A надо совершить, чтобы повернуть контур на угол $\alpha=90^\circ$ вокруг оси, совпадающей с диаметром контура?

- 7. В однородном магнитном поле с индукцией B=0,1 Тл движется проводник длиной l=10 см. Скорость движения проводника $\upsilon=15$ м/с и направлена перпендикулярно к магнитному полю. Найти индуцированную в проводнике ЭДС.
- 8. Катушка длиной l=20 см и диаметром d=3 см имеет 400 витков. По катушке идет ток l=2 А. Найти индуктивность L катушки и магнитный поток Φ , пронизывающий площадь ее поперечного сечения.
- 9. Магнитный поток сквозь соленоид (без сердечника) $\Phi = 5$ мкВб. Найти магнитный момент P соленоида, если его длина l = 25 см.
- 10. Катушка индуктивностью L=1 мГн и воздушный конденсатор, состоящий из двух круглых пластин диаметром D=20 см каждая, соединены параллельно. Расстояние d между пластинами 0.5 см. Определить период T колебаний.
- 11. Катушка имеет индуктивность $L = 0,144 \, \Gamma$ н и сопротивление $R = 10 \, \text{Ом}$. Через какое время t после включения в катушке потечет ток, равный половине установившегося?
- 12. Индуктивность L колебательного контура равна 1 м Γ н. Какова должна быть электроем-кость C контура, чтобы его резонанс соответствовал длине волны $\lambda = 300$ м?
- 13. Катушка диаметром d = 10 см, состоящая из N = 500 витков проволоки, находится в магнитном поле. Найти среднюю ЭДС индукции, возникающую в этой катушке, если индукция магнитного поля увеличивается в течении времени t = 0.1 с от 0 до 2 Тл.
- 14. Оптическая разность хода двух интерферирующих волн монохроматического света $\Delta L = 1,5\lambda$. Что можно сказать о разности фаз этих волн?
- 15. Определить длину отрезка, на котором укладывается столько же длин монохроматического света в вакууме, сколько их укладывается на отрезке l = 5мм в стекле. Показатель преломления стекла n = 1.5.
- 16. Идеальные зеркальную и черную поверхности облучают светом в одинаковых условиях. На какую поверхность свет оказывает большее давление? Во сколько раз?
- 17. Запишите возможные значения орбитального квантового числа l и магнитного квантового числа m_l для главного квантового числа n=4.
- 18. Определите число протонов и нейтронов, входящих в состав ядер: $1)^{16} O$; $2)^{17} O$; $3)^{18} O$. Как называются эти ядра?
- 19. Расстояние d между двумя щелями в опыте Юнга равно 1 мм, расстояние L от щелей до экрана равно 3 м. длина волны, испускаемая источником монохроматического света, $\lambda = 0.5$ мкм. Определить ширину полос интерференции на экране.
- 20. Сколько штрихов на 1 мм содержит дифракционная решетка, если при нормальном падении монохроматического света ($\lambda = 0.6$ мкм), максимум четвертого порядка отклонен на 30°.
- 21. Какой наименьшей разрешающей силой R должна обладать дифракционная решетка, что-бы с ее помощью можно было разрешить две спектральные линии калия с длинами волн $\lambda_1 = 578$ нм и $\lambda_2 = 580$ нм? Какое наименьшее число штрихов N должна иметь эта решетка, чтобы разрешение было возможно в спектре второго порядка?
- 22. Угол преломления луча в жидкости равен 30°. Определить: а) показатель преломления жидкости, если отраженный луч максимально поляризован; б) определить угол между отраженным и преломленным лучом.
- 23. Два поляроида ориентированы так, что пропускают максимум света. На какой угол следует повернуть один из них, чтобы интенсивность прошедшего света уменьшилась наполовину?

- 24. Определить максимальную скорость υ_{max} фотоэлектронов, вырываемых с поверхности серебра (A = 4.7 эВ) ультрафиолетовым излучением с длиной волны $\lambda = 155 \text{ нм}$.
- 25. Определить энергию первого возбужденного состояния и первый потенциал возбуждения атома водорода.
- 26. Оценить выход энергии в реакции деления ядра урана 235, в котором на нуклон приходится энергия связи 7,6 МэВ, с образованием осколков бария 139 и криптона 94, для которых энергия связи на нуклон равна 8,7 МэВ. Считать, что около 40 МэВ энергии уносится нейтронами и гамма-излучением.
- 27. Оценить на примере реакции синтеза ${}^{2}_{1}H + {}^{2}_{1}H \rightarrow {}^{4}_{2}He$ энергию, выделяемую на один нуклон. Масса атомов дейтерия $m_{1} = 2$, 01410 а.е.м., гелия $m_{2} = 4$, 00260 а.е.м.

Типовой вариант экзаменационного билета по разделам

«Электромагнетизм. Колебания и волны. Оптика. Основы физики атома и атомного ядра»

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «Мурманский арктический университет»

(ΦΓΑΟΥ ΒΟ «ΜΑΥ»)

	Экзамена	цион	ный	і билет Л	№ 1	
Наименование дисциплины	Физика	,	_2	курс,	3	семестр
Направление подготовки:09	.03.02	_				
Кафедра: Высшей математики	и физики					
институт. интеллектуальных с	истем и циф	ьовы	X I CX	нологии		

- 1. Магнитная индукция. Магнитный момент витка с током. Принцип суперпозиции магнитных полей.
- 2. Интерференция света: пространственная и временная когерентность, сложение двух когерентных колебаний (опыт Юнга).
- 3. Оценить на примере реакции синтеза ${}^{2}_{1}H + {}^{2}_{1}H \rightarrow {}^{4}_{2}He$ энергию, выделяемую на один ну-клон. Масса атомов дейтерия $m_{1} = 2$, 01410 а.е.м., гелия $m_{2} = 4$, 00260 а.е.м.

клон. Масса атомов д	деитерия $m_1 = 2$, 01410 a.e.м., гелия $m_2 = 4$, 00260 a.e	.M.
Вав. кафедрой ВМиФ		В.В. Левитес
Утверждено на заседании каф	редры	
Протокол № от	_2024 г.	

Оценка	Критерии оценки ответа на экзамене
	Обучающийся глубоко и прочно усвоил программный материал, исчерпывающе, после-
Отлично	довательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с
	практикой, не затрудняется с ответом при видоизменении вопроса.
	Обучающийся твердо знает материал, грамотно и по существу излагает его, не допуская
	существенных неточностей в ответе на вопрос, владеет специальной терминологией на
Хорошо	достаточном уровне; могут возникнуть затруднения при ответе на уточняющие вопросы
	по рассматриваемой теме; в целом демонстрирует общую эрудицию в предметной обла-
	сти.
	Обучающийся имеет знания только основного материала, но не усвоил его деталей, до-
Удовлетворительно	пускает неточности, недостаточно правильные формулировки, плохо владеет специаль-
3 оовленьорительно	ной терминологией, допускает существенные ошибки при ответе, недостаточно ориенти-
	руется в источниках специализированных знаний.
Неудовлетворительно	Обучающийся не знает значительной части программного материала, допускает суще-
	ственные ошибки, нарушения логической последовательности в изложении программ-
	ного материала, не владеет специальной терминологией, не ориентируется в источниках
	специализированных знаний.

TT	v
Het otreta i	на поставленный вопрос.

Оценка, полученная на экзамене, переводится в баллы («5» - 20 баллов, «4» - 15 баллов, «3» - 10 баллов) и суммируется с баллами, набранными в ходе текущего контроля.

Итоговая оценка по	Суммарные баллы	Критерии оценивания
дисциплине (модулю)	по дисциплине (мо-	
	дулю), в том числе	
Отлично	91 - 100	Выполнены все контрольные точки текущего контроля на высо-
Отлично	91 - 100	ком уровне. Экзамен сдан
Vanama	81-90	Выполнены все контрольные точки текущего контроля. Экзамен
Хорошо	81-90	сдан
Vàsazamaanımazı ua	70- 80	Контрольные точки выполнены в неполном объеме. Экзамен
Удовлетворительно	/0- 80	сдан
Неудовлетворительно	69 и менее	Контрольные точки не выполнены или не сдан экзамен

5. <u>Задания диагностической работы</u> для оценки результатов обучения по дисциплине (модулю) в рамках внутренней и внешней независимой оценки качества образования

ФОС содержит задания для оценивания знаний, умений и навыков, демонстрирующих уровень сформированности компетенций и индикаторов их достижения в процессе освоения дисциплины (модуля).

Комплект заданий разработан таким образом, чтобы осуществить процедуру оценки каждой компетенции, формируемых дисциплиной (модулем), у обучающегося в письменной форме.

Содержание комплекта заданий включает: тестовые задания и расчетные задачи.

Комплект заданий диагностической работы

Код и наименование компетенции: ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности

Вариант №1

Задание 1. При измерении физической величины её истинное значение получить невозможно из-за присутствия погрешностей. Какое значение измеряемой величины при проведении серии измерений принимают за истинное значение? Варианты ответов:

<i>a</i>) табличное значение	в) сумма значений
б) среднее значение	г) произведение значений

Задание 2. Разность между результатом измерения некоторой величины x и его истинным значением x_{ucm} называется ...

Варианты ответов:

- а) относительной погрешностью
- в) абсолютной погрешностью
- δ) случайной погрешностью
- г) систематической погрешностью

Задание 3. Класс точности амперметра 1,0. Максимальная сила тока, отсчитываемая по шкале прибора 10 A. Определите приборную погрешность амперметра. Ответ 0,1 A

Задание 4. Определите давление на дне воде	оема глубиной 5 м. Плотность воды 1000
$\kappa \Gamma / M^3$, атмосферное давление 101 $\kappa \Pi a$. Ответ:	<u>150 кПа</u>

Задание 5. Определить силу электрического тока I в замкнутой цепи, в которой действует источник ЭДС $\varepsilon=2$ B с внутренним сопротивлением r=1 Om и внешним сопротивлением R=3 Om.

Варианты ответов:

a) 1 A	в) 0,5 A
б) 2 <i>A</i>	г) 3 A

Задание 6. В замкнутом проводящем контуре полный магнитный поток Φ изменился с 4 $B \sigma$ до 8 $B \sigma$ за время t=2 c. Определить модуль среднего значения $\mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I}$ электромагнитной индукции.

Варианты ответов:

a) 1 B	в) 0,5 B
б) 2 B	e) 3 B

Задание 7. Угол между направлением магнитного и географического меридианов называют:

а) магнитным наклонением	в) магнитным отклонением
δ) магнитным склонением	arepsilon) девиацией

Задание 8. Частота колебаний частиц среды составляет $10 \Gamma \mu$, длина волны 2 M. Какова скорость распространения волны? Ответ: 20 м/c

Задание 9. Опасным для жизни человека является поражение электрическим током более 20 мА. Какое напряжение может представлять опасность для жизни человека? Электрическое сопротивление тела человека при поврежденной коже около 1000 Ом. Ответ: **20 В**

Задание 10. При переходе света из среды с показателем преломления n_1 в среду показателем преломления n_2 не изменяется ...

- а) длина волны;
- δ) частота;
- e) скорость света;
- г) направление распространения света.

Вариант №2

Задание 1. Погрешность, которая имеет вероятностный характер, появление которой не может быть предупреждено называется ...

Варианты ответов:

а) систематической	в) грубой
б) инструментальной	г) статистической

Задание 2. Напряжение измеряется вольтметром с пределом измерения 6 В. Класс точности вольтметра 2,5. Определите абсолютную погрешность этого прибора. Ответ:

_			- F	-,	_
	0,15 B	}			

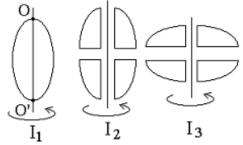
Задание 3. Приведите формулу для относительной погрешности δ результата серии измерений физической величины.

a)
$$\delta = \frac{\Delta x}{\zeta x > \dot{\zeta} \dot{\zeta}} \cdot 100 \%$$

b) $\delta = \dot{\zeta} x > \frac{\dot{\zeta}}{\Delta x} \dot{\zeta} \cdot 100 \%$

$\delta \delta = \Delta x \cdot x$	$\varepsilon) \delta = \Delta x + x$

Задание 4. Вычислить работу силы трения A, совершаемую при прямолинейном равномерном перемещении тела под действием постоянной силы F=2 H на расстояние S=2 M.


Варианты ответов:

а) 4 Дж	в) — і 4 Дж	
б) 2 Дж	г) – і 2 Дж	

Задание 5. Укажите правильное определение амплитуды колебаний *Варианты ответов*:

T		
а) максимальное смещение из поло-	в) время совершения одного полного	
жения равновесия	колебания	
б) число колебаний, совершаемых за	г) смещение из положения равновесия	
единицу времени	в произвольный момент времени	

Задание 6. Из жести вырезали три одинаковые детали в виде эллипса. Две детали разрезали на четыре одинаковые части. Затем все части отодвинули друг от друга на одинаковое расстояние и расставили симметрично относительно оси ОО'.

Для моментов инерции относительно оси ОО' справедливо соотношение ...

a)
$$I_1 = I_2 = I_3$$
;

6)
$$I_1 < I_2 < I_3$$
;

6)
$$I_1 < I_2 = I_3$$
;

$$_{\mathcal{C}}) I_1 > I_2 > I_3.$$

Задание 7. Угол, который образует вектор напряженности \overrightarrow{H} магнитного поля Земли с плоскостью горизонта в данной точке, называется

а) магнитным наклонением	в) магнитным отклонением
б) магнитным склонением	<i>г</i>) девиацией

Задание 8. Напряжённость электрического поля в некоторой точке равна E=200~B м. С какай силой F будет действовать поле на заряд $q=10^{-9}~K\pi$?

Варианты ответов:

а) 200 ГН	в) 200 ·н H
б) 2 ·10 ⁻⁷ Н	г) 0,5 ·10 ⁻⁷ Н

Задание 9. Длины волн λ видимого света лежат в диапазоне ... мкм:

a)
$$\lambda > 1.2$$
:

e) 0,8<
$$\lambda$$
<1,2;

$$\partial$$
) λ >0,8.

6) 0,4<
$$\lambda$$
<0,8;

$$\epsilon$$
) $\lambda < 0.4$;

Задание 10. Определите работу выхода A электрона из натрия, если красная граница фотоэффекта $\lambda_0 = 663$ нм. $(h = 6,63 \cdot 10^{-34} \text{Дж} \cdot c)$.

а) 3 Дж	в) 10 ²⁷ Дж
б) 3*10 ⁻¹⁹ Дж	г) 10 ⁻³ Дж

Вариант №3

Задание 1. Произведя четыре раза измерения расстояния между какими-то двумя точ-ками, получили следующие значения: 2805,8 м; 2889,3 м; 2895,0 м; 2830,5 м. Среднее значение:

$$\frac{2805,8+2889,3+2895,0+2830,5}{4} = 2855,15 \,\text{m}.$$

Чему равно среднее значение после округления? Ответ: 2860 м

Задание 2. Класс точности вольтметра $E_n = 0.5$, максимальная величина напряжения, отсчитываемая по шкале прибора $U_{max.} = 100~B$. Определить инструментальную (приборную) погрешность ΔU вольтметра.

Варианты ответов:

a) 0,5 B	в) 0,05 B
$\delta = 0.5 B$	<i>₂)</i> ± 0,05 <i>B</i>

Задание 3. В процессе вычислений было получено значение величины $x=27,47\pm0,18$. Как правильно записать результат? Ответ: $x=27,5\pm0,2$.

Задание 4. Момент силы относительно неподвижной точки (центра) равен:

- a) $\vec{M} = [\vec{F} \times \vec{r}].$
- $\vec{o}) \vec{M} = [\vec{r} \times \vec{F}].$
- e) $|\vec{M}| = (\vec{r} \times \vec{F}).$
- $\varepsilon) |\vec{M}| = (\vec{F} \times \vec{r}).$
- ∂) $|\vec{M}| = |\vec{r}| |\vec{F}|$.

Задание 5. Уравнение Бернулли $\frac{\rho v^2}{2} + \rho g h + p = const$ выражает закон сохранения:

- а) потенциальной энергии;
- δ) импульса;
- в) кинетической энергии;
- г) энергии;
- ∂) момента импульса.

Задание 6. Ламповый реостат состоит из пяти электрических лампочек, включенных параллельно. Сопротивление каждой лампочки равно 350 Ом. Найти сопротивление реостата, когда: a) горят все лампочки; δ) вывинчиваются три лампочки. Ответ: a) 70 Ом; δ) 175 Ом.

Задание 7. Как направлена вертикальная составляющая напряженности \vec{H} магнитного поля Земли в северном полушарии:

а) вверх	в) влево	
<i>б</i>) вниз	г) вправо	

Задание 8. Прямой провод, по которому течет ток силой I=3 A, расположен в однородном магнитном поле перпендикулярно линиям магнитной индукции. С какой силой F действует поле на отрезок провода длиной l=1 m, если магнитная индукция равна B=1 T_{I} ?

omocmoo.		
	a) 1 H	в) 3 <i>Н</i>
	б). 2 <i>H</i>	г) 6 H

Задание 9. Укажите формулу, выражающую взаимосвязь массы и энергии в теории относительности.

Варианты ответов:

$a) E = \frac{mv^2}{2}$	$e) E = \frac{hc}{\lambda}$
\widetilde{o}). $E = hv$	$\varepsilon) E = mc^2$

Задание 10. Укажите, сколько нейтронов содержит ядро изотопа атома гелия: ${}_{2}^{3}He$.

Варианты ответов:

a) 1	e) 3
<i>6</i>) 2	e) 5

Вариант №4

Задание 1. Шкала амперметра имеет 150 делений. Предельное значение силы тока I_{nped} = 75 A. Определите цену деления шкалы. Ответ: **0,5 A**/деление.

Задание 2. Класс точности амперметра $E_n = 1,0$. Максимальная сила тока, отсчитываемая по шкале прибора, $I_{max.} = 10$ А. Определить инструментальную (приборную) погрешность ΔI амперметра.

Варианты ответов:

a) 0,1 A	$\mathbf{B}) \pm 0.1 \mathbf{A}$
б) 10 А	г) ± 10 A

Задание 3.

К каждой позиции первого столбца подберите соответствующую позицию обозначения тока на измерительных приборах из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

d coordererby to minim of kbamin.	
а) Постоянный ток;	\sim
	1) —
б) Переменный однофазный ток;	2)
в) Постоянный и переменный ток;	$ _{3)}$ \sim

<i>a</i>)	6)	6)
2	3	1

Задание 4. Координата x материальной точки зависит от времени по закону x=2 t^3 . Найдите её скорость в момент времени t=2 c? Варианты ответов:

a) 12 м/c	в) 6 м/с
б) 24 м/c	г) 18 м/c

Задание 5. Тело массой 150 кг и объемом 0.2 м^3 плавает на поверхности воды, плотность которой 1000 кг/м^3 . Найти объем погруженной части тела. Ответ: **0.15 м**³

Задание 6. В результате кругового процесса газ совершил работу A=1 Дж и передал охладителю количество теплоты $Q_2=4$ Дж. Определить термический $K\Pi Д$ η цикла (в процентах).

a) 40 %	B	30 %

6) 25 %	2)	20 %

Задание 7. Как изменяется напряженность \overrightarrow{H} магнитного поля Земли от полюсов к экватору:

а) увеличивается **б) уменьшается**

Задание 8. Электрическое сопротивление верхнего рогового слоя кожи человека при неповрежденной коже около 100 кОм, а при поврежденной коже 1 кОм. Электрический пробой кожи человека наступает при напряжении около 200 В. Какие значения имеет сила тока при этом напряжении при неповрежденной коже и после электрического пробоя? Ответ: **2 мA; 0,2 A.**

Задание 9. Скорость самолета с реактивным двигателем 950 км/ч. Размах крыльев — 12,5 м. Найти ЭДС индукции, возникающую на концах крыльев, если вертикальная составляющая индукции земного магнитного поля равна 50 мкТл. Ответ: **165 мВ**

Задание 10. Определить энергию ε_{γ} фотона, которому соответствует длина волны $\lambda = 300 \ \text{нм} \ (h = 6,63 \cdot 10^{-34} \text{Дж} \cdot c).$

a) 6,63· 10 ⁻¹⁹ Дж	в) 19,89 · 10 ⁻⁴¹ Дж
б) 2,215· 10 ⁻³⁴ Дж	г) 2,21· 10 ⁻²⁷ Дж